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ABSTRACT

Digital communication signals are inherently nonstationary (time varying spectral
content) signals due to their information content. This suggests the use of time frequency
analysis methods for detecting these signals as well as obtaining the desired signal
parameters. For signals employing phase-shift-keying (PSK) to convey information, the
important signal parameters are the carrier (sinusoid) center frequency and information
(bit) rate. |

In this thesis, the signal detection problem is addressed using time frequency
processing of a carrier signal embedded in additive white gaussian noise (AWGN). A
TFR (time frequency representation) performance measure based on a mean and variance
analysis is proposed and used to estimate the center frequency of a carrier. Through
computation of the discrete-time TFR, our results show that this measure provides a
means to determine the presence of a carrier signal in noise even when the TFR itself
becomes quite obscured by the noise. The cone kernel-TFR is seen to yield the highest

frequexicy resolving capability compared with the Wigner-Ville distribution and the

Choi-Williams distribution. Accesion For
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I. INTRODUCTION

A. MOTIVATION

In digital communication systems employing binary phase-shift-keying (BPSK) to
convey information (bits), the phase of a carrier (sinusoid) signal is shifted by 0 degrees
or 180 degrees using a digital waveform. The digital waveform is a bipolar voltage
signal generated by the bit stream representing the data, where a bit “one” might
correspond to “positive” and a bit “zero” to “negative” (or vice versa). Therefore, the
BPSK signal is simply a carrier signal multiplied (modulated) by a data waveform. This
results in a nonstationary (time varying spectral content) signal, which suggests the use
of time frequency analysis methods for determining both the signal’s spectral and
temporal information.

Suppose one is interested. in the detection of a BPSK signal in noise. An intended
receiver of a BPSK signal simply uses a correlation receiver which consists of a local
oscillator (i.e., carrier center frequency), an integrator (over one bit period), and a
comparator. On the other hand, an unintended receiver of a BPSK signal must use some
other means of detection since he lacks knowledge of the vital signal parameters.. In the
absence of noise, a TFR (time frequency representation) of a BPSK signal would reveal
information about the carrier center frequency, the bit rate, and the times at which the
phase shifts occurred. However, the inevitable presence of noise in a communications
channel calls for an examination into the ability of a TFR to detect nonstationary signals

in noise.




A direct sequence spread spectrum (DS-SS) signal represents a more realistic
signal targeted for interception by a unintended receiver. Since a DS-SS signal is itself a
PSK signal, the foregoing discussion related to using the TFR for detecting such signals
applies, except that a parameter analogous to the bit rate termed the chip rate is the
parameter of interest (in addition to the carrier center frequency). Through the “spectrum
spreading” process, the spectrum of the underlying BPSK signal is reduced in amplitude
below the noise level. It is for this reason that an analysis of the performance of a TFR
used for detecting a signal in noise is to be examined.

For this thesis, our analysis is restricted to the performance evaluation of a TFR

used to detect the center frequency of a noisy carrier signal.

B. TIME FREQUENCY ANALYSIS

Time frequency analysis of signals result in a representation of a signal’s energy
jointly in time and frequency. The resulting time frequency representation (TFR) is
therefore a depiction of the spectral content of a signal as a function of time. An infinite
number of TFR’s can be generated for a particular signal using a “generalized”
expression for the TFR (GTFR) known as Cohen’s class of bilinear TFR’s [Ref. 1].
Specifically, a TFR within this class is completely specified by a two-dimensional

function called the “kernel” function according to the following expression:

TF(@t, f) = T ]2 ]ﬂcb(v,t)x(u +1/2)x" (u—-1/2)e” " P dudrdy

—Q0--00—00

where x(f) is the signal of interest and ¢(v,7) is the kernel function."

! [ T denotes complex conjugate.




The TFR can best understood as a two-dimensional Fourier transform of the

product of the kernel function with the auto-ambiguity function, 4(v,t), defined as
Av,7) = [x(u+t/2)x" (-1 /2)e ™ du

However, since the order of integration can be interchanged, the TFR can be also be
interpreted as a two-dimensional filtered Wigner-Ville distribution [Ref. 2: p38] where
the filter is the kernel defined in the time-frequency plane. [Ref. 2] provides a detailed
summary of the properties of the Wigner-Ville distribution since it does represent the
most fundamental TFR within Cohen’s class. These are just two of many interpretations
of the TFR, some of which can provide insight into the selection of a kernel function for
a particular signal.

Since there is no “best” TFR for any given signal, there has been an effort to
provide a method for determining an “optimal” kernel for an arbitrary signal [Ref. 3].
The basic approach used in [Ref. 3] was to eliminate as much of the cross terms in the
auto-ambiguity function of a signal while retaining as much of the auto-components as
possible. [Refs. 4-6] proposed and examined the use of a cone-shaped kernel for the
processing of PSK signals in addition to speech signals. In [Ref. 5], the use of the cone
kernel TFR (CK-TFR) for PSK signals resulted in a spectral “peak-splitting” effect
coincident with the phase shifts occurring in the signal. Since the cone kernel yielded
superior time and frequency resolution for a PSK signal compared to the spectrogram
[Ref. 5], it may be considered a better choice of kernel for detecting and analyzing PSK

signals.




C. OUTLINE

In this thesis, the signal detection problem is addressed using time frequency
processing. We would like to determine whether there is a better kernel (i.e., TFR) to
use in time frequency analysis for the detection of a carrier signal embedded in AWGN.
Toward this end, a decision statistic and a related TFR performance measure is proposed
in Chapter II for a TFR. Using the discrete-time formulation of the TFR, the equations
used to calculate the mean and variance of the decision statistic are derived. Chapter I1I
is devoted to the Wigner-Ville Distribution (WVD) of a carrier signal. In Chapter IV,
the equations developed in Chapters II and III are implemented for three different
kernels. In particular, the proposed performance measure using the WVD is computed
for various noise levels. Additionally, a comparison of the results obtained using three
different kernels is made. Finally, a summary of the results and final remarks are given

in Chapter V.




II. TIME FREQUENCY ANALYSIS OF A DISCRETE-TIME SIGNAL

Signal analysis using a time-frequency representation (TFR) cannot be easily
depicted in a closed form expression. In order to facilitate practical signal analyses, the
discrete-time TFR’s are employed for analyzing discrete-time signals. In this chapter, a
TFR performance measure based on a mean and variance analysis is propdsed and used

to estimate the frequency of a carrier signal (sinusoid) embedded in AWGN.

A. SIGNAL SEQUENCE

For practical signal analysis, only a finite amount of data can be used or is
available for use by the signal analyst, usually in the form of a discrete sequence. Since
the time origin can be arbitrarily chosen, an arbitrary continuous-time signal, x(¢), with
a duration of T seconds can be assumed to exist in the interval [-7/2,7/2] for
analytical convenience. If x(f) is sampled at regular intervals of duration 7, seconds,

5

the resulting sequence,
x(n) =[x(-L),x(-L+1),...,x(0),...,x(L)]

is defined for n in the interval [-L, L], where T = 2L7;‘ and the total number of samples

is M=2L+1.




B. DISCRETE-TIME TFR

The TFR of the continuous-time signal x(f) is given as

TF(t, f) = f T‘b(’ — £ )x(t'+ 1 2)x" (=t [ 2)e o dt dr

—00—00

where ¢(n, k) is the kernel function and x(¢) is the signal. Discretizing the frequency,

we obtain the discrete-time TFR as

TF(n,m) =1, i it’p(p,k)x(n —-p+k)x"(n-p- k)e"(%)""‘

p=—Lk=-L

@2.1)

where f=m/(MT,), M=2L+1, and m=[-L~-L+1,..0,.,L]. Note that
transforming the continuous-time variable © /2 to the discrete-time variable k¥ implies
that the frequencies in the resulting TFR are multiplied by a factor of two.

If x(n) is a real sequence and ¢(n,k) is a real, even function in £ (ie.

d(n,k) = d)(ﬁ,—k) ), then

TF*(n,m)=T, ), ZL:d)(p, k)x(n—p+k)x(n-p- k)e“'(ﬁﬂ)"’"
=T, id)(P,‘k)x(n -p-k)x(n-p+ k)eﬂ(ﬁ)m

-T3 So@.Dxn-p +ox(n—p—ne"{'ﬂ)”'

I=-Lp=-L
= TF(n,m),

which is real, and therefore




TF(n,m) = —;—[TF(n,m) +TF" (n,m)]

= % Z Zd)(p, kyx(n-p+k)yx(n-p- k)[e_j(ﬁ)m + e“{—ﬁ)m‘c]
=T i ZL:d)(p,k)x(n - p+k)x(n— p-k)cos(2nmk /| M) (2.2)

Finally, since (2.2) is an even function in m (7F(n,m)= TF(n,—m)), only values of

TF(n,m) for m in the interval [0, L] need be used for displaying the TFR.

C. DETECTING THE CENTER FREQUENCY OF A CARRIER SIGNAL
Suppose x(n) = Acos(2mmyn/ M) for |[n/<L, and we are interested in

determining the carrier frequency (specified by m, ) from its TFR. Since the TFR can be
considered as a joint distribution of a signal’s energy over the time-frequency plane,
summing TF(n,m) over all n effectively collects the total energy contained within each

frequency bin. We define a measure, or a decision statistic, Y (m) as:

Y(m) = i TF(n,m) (2.3)

One would expect Y(m) to have a maximum value located at m =m,. If equation (2.2)

is substituted into (2.3), we have

Y(m)=T, ZL: i ¢(p,k)[ix(n—p+k)x(n—p—k)]cos(ank/M)

k=—L p=—-L n=—cw0

and if we make the substitution, / = n— p, and observe that 7F(n,m) is defined only for

n in the interval [-2L, 2L] since x(n) is defined only for || < L, we obtain




=T i ZL: o(p, k)[ 2szlpx(l +k)x(l - k)} cos(2nmk | M)

k=L p=-L 1==2L-p
Notice that x(I + k)x(I— k) is defined only when —-L</+k<L,and -L<I-k<L.
Therefore, we have

~L+k|<I<L-|k| = -L<I<L, VYkpe[-LIL]

which yields

Y(m)=T, ZL: > { icb( D, k)}x(n + k)x(n - k) cos(2nmk | M)

k=—Ln=—L| p=-L

=T ZL: p(k)x(n+ k)x(n— k)cos(2nmk | M)

n=-L k=-~L (24)
m=[01,...,L]
where
p(k) = _Z(b(p, k) (2.5)

D. NOISE ANALYSIS
Consider a deterministic signal sequence, s(n), embedded in an AWGN noise

sequence, w(n). We set

() = {s(n) +w(n), <L

0, otherwise
with E {w(n)} =0, and E {w(n,)w(n,)}= 8 (n, —n,), where

n =n,

l’
8(n, —n,) ={

0, n #n,




and E {} denotes expectation. Now, if we substitute x(n) = s(n) + w(n) into (2.4), we

get

Y(m)=T, i p(K)[s(n+ k) + w(n+ k)][s(n— k) + w(n — k)lcos(2rmk / M)

n=-L k=-L

=T i ZL: p(k)s(n + k)s(n— k) cos(2nmk | M)

+7, ZL: i p(k)w(n+ k)w(n—k)cos(2nmk | M)
n=—L k=-L (26)

+7 i i p(k)s(n+ k)yw(n— k) cos(2rmk | M)

+T ZL: i p(k)yw(n + k)s(n — k) cos(2rmk | M)

n=—L k=-L
For simplicity of analysis, we assume that p(k) is evenin k. It follows that
L
T.> > p(k)s(n+ k)w(n—k)cos(2nmk | M)

=T i Z p(=k)s(n— k)w(n + k) cos(2rnm(=k) / M)

=T i i p(k)s(n— k)yw(n + k) cos(2rmk / M)

n=-L k=-L

so the last two terms in (2.6) are the same. Therefore, we have

Y(m) =Y (m)+7,(m)+Y,,,(m) @7

where
Y (m=T, i i p(k)s(n + k)s(n — k) cos(2nmk | M) (2.8)
Y, (m)=T, i i p(k)w(n+ kYw(n— k) cos(Qnmk | M) (2.9)




Y, (m)=2T, ZL: ZL: p(k)s(n+k)w(n—k)cos(2nmk | M) (2.10)

n=—Lk=—L
Note that since Y(m) is the sum of a deterministic component, Y, (m), and random
(noise) component, ¥, (m)+Y___(m), it is a sequence of random variables in frequency
(indexed by m). For convenience, we define the random component of Y(m) as
Y, e (m) = ¥, (m) + . (m)
‘which gives
Y(m) =Y,(m)+1,,,,(m) 2.11)
1. Mean Analysis |
The mean of Y(m) is found by taking the expectation of (2.11) as follows
E{Y(m)} = ¥,(m) + E{E,,,, (m)} e
where E{Y . (m)} =E{Y, (m)}+E{Y,,  (m)}. Using (2.9) and taking the expectation
inside the summation, we get
E{Y (m}=T, i Z p(K)E{w(n+ k)w(n- k)}cos(2nmk | M)

Lk=~L

=To? > D p(k)d(2k)cos(2rmk | M)

L
n=-L k=-L
since E {w(n +k)w(n- k)} =6 *5(2k) . Evaluating the summations, we obtain
E (¥, (m)} = MI,o*p(0) 2.13)

The expected value of (2.10) is easily seen to be zero since E{w(n—k)} =0. Therefore,

the only contribution to the mean of ¥(m) is from the auto-signal and auto-noise

10




components, Y (m)and Y, (m), respectively. Using (2.13) in (2.12) yields the final
expression for the mean of Y(m):
E{Y(m)} =Y,(m) + MT,c*p(0) (2.14)
2. Variance Analysis

Since Y, (m) is deterministic, we have
Var {Y(m)} = Var {¥,,,,,(m)} =E{¥.2,,(m)} - [E{Y,;, (m)}]® (2.15)
where Var {#} denotes variance. Evaluating Y2, (m), we get
Yooie (m) = [¥, (m) + ¥, (m)]*

=YZ(m)+Y?

088

(m) +2Y,(m)Y,,(m)
Then, taking expectation of above expression, we get

E (Y. (m)} =E{¥;(m)}+E{Y_,.(m)}+EY, (mY,,, (m)}
In order to evaluate the above expression, it is necessary to use the following relation for
zero mean, jointly normal random variables from [Ref. 7].

E{ww,w,w,}=C,,C,, +C,;C,, +C,,C,;
where C; =E{w,w;} (2.16)
We have |
E{2Y,(m7Y,,,(m)} =0

since this term involves the product of three, zero mean, gaussian random variables. We
can show this by observing that if we set w, = 1 (with certainty) in (2.16), we have

E{ww,w,}=C,E{w,}+C,E{w,} + CrE{w}=0

11




Therefore, all terms in the summation are zero. We are left to evaluate
E{Y}.(m}=E{Y;(m}+E{Y], (m)} (2.17)

If we square both sides of (2.9) and take expectation, we have

L L

E{Xim}=1"> > i i[p(k)p(k')cos(ank / M) cos(2mmk' M)

o E{w(n+ k)w(n— k)yw(n'+k"Yw(n'—k')}]
The expectation within the summation is evaluated by applying (2.16) as follows:
E {w(n+ k)w(n— k)w(n'+k" ) w(n'-k')}
=E {w(n+ k)yw(n— k)} E {w(n'+k" ) w(n'—k')}
+E {w(n+ E)w(n'+k')} E {w(n - k)yw(r'—k')}
+E {w(n + k)w(r'—k")} E {w(n - k)w(n'+k')}
=0 '3 (k) (k')
1043 (n—n'+k—k')S(n-n'-k + k')
+045(n—n+k + k') (n—n'—k - k')
=G *[S (RO (K') +8(n—n)d (k- k') +8(—n')5 (k + k)]
We substitute this into the expression for E{¥?(m)} and evaluate the summations to

obtain the final expression for the mean square value of ¥, (m):

E{Y}(m)}=T 4[szz(O) +2M ZL: p?(k)cos® (2nmk / 1\/[)]

k=-L

=[MTo*p(0)) +2MT*c* ZL: p?(k)cos® (2mmk | M)

k=—~L

12




Similarly, the mean square value of Y__ (m) is computed by squaring both sides of

(2.10) and then taking expectation to yield

E{Y;,.(m)}

=472 > ZL: ZL:[p(k) p(k")s(n+k)s(n'+k') cos(2mmk | M) cos(2rnmk' /M)

n=~Ln'=-L k=-L k'=~L

o E {(w(n-kyw(n'-k")}]

=4T%c? ZL: ZL: ZL: p(k)p(k")s(n+k)s(n— k +2k")cos(2rnmk | M) cos(2rmk' /M)

n=—L k=—Lk'=-L

Equation (2.17) becomes

E {Yniise (m)}

L
=[MTcp(O)f +2MT}c* > p* (k) cos’ (2nmk | M)
k=-L

+4T%c? ZL: EL: i p(k)p(k")s(n+ k)s(n—k +2k") cos(2mmk /| M) cos(2nmk' IM)

n=—L k=—~L k'=-L
Now, since E{Y ., (m)} =E{Y, (m)}, we substitute (2.13) and above expression into

(2.15) to yield the final expression for the variance of Y(m):
L
Var {Y(m)} = 2MTc* ) p* (k) cos’ (2nmk | M)
k=-L
L L L
+4T%c*? Z Z Z[p(k)p(k')s(n +k)s(n—k +2k")

n=-L k=-L k'=—L (2.18)
o cos(2nmk | M) cos(2nmk' /IM)]

Note that s(n) is defined only for |n/< L.
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3. TFR Performance Measure
In the following, we define the signal-to-noise power ratio for the decision

statistic, Y(m), as

_ [E¥m)T
SNRy () = 52 (2.19)

where E {Y(m)} and Var {¥(m)} are given in (2.14) and (2.18), respectively. The ratio,
SNR, (m), is proposed here as a performance measure that could be used to analyze the
performance of a TFR in detecting a carrier signal in the presence of AWGN. In
computing SNR, (m) for a carrier signal using different kernel functions, we would like
to: (i) determine whether SNR,(m) is a suitable measure for a particular TFR; (ii)
determine the effect of AWGN on SNR,(m); (iii) employ SNR,(m) as a relative
performance measure in choosing the best kernel.

In the next chapter, we examine the Wigner-Ville Distribution of a carrier signal
to observe the effect that truncating a signal in time has on the TFR. In addition, the
results of the mean and variance analysis performed in this chapter are applied to the

WVD.
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HI. WIGNER-VILLE DISTRIBUTION OF A CARRIER SIGNAL

In this chapter, the Wigner-Ville Distribution (WVD) of a finite duration
continuous-time carrier signal is presented. Then, the TFR for a finite length carrier
signal sequence is computed and shown to be in close agreement with that derived for

continuous-time analysis.

A. CONTINUOUS-TIME WIGNER-VILLE DISTRIBUTION
1. Carrier Signal Unbounded in Time

For the continuous-time signal, x(f), the WVD is given by
TF(t, f) = j x(t+1/2)x"(t -1 /2)e ™ dr (3.1)

Suppose x(¢) = Acos(2nf,f) and is assumed to exist for all time. The WVD is computed
by forming the product
x(t+1/2)x"(t-1/2) = A* cos(2nf,(t +1 / 2))cos(2nf,(t -1 / 2))

= ATZ[cos(47tfct) +cos(2nf,1)] (32

and Fourier transforming with respect to 7 :

TR, 1) = A costl B (N + A B - £)+8U +101, Vi G

whered () is the Dirac delta function. Note that the signal energy is concentrated at

f = f., the center frequency of the carrier signal.
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2, Finite Duration Carrier Signal
Consider the following carrier signal defined for ¢ in the interval [-7/2,7/2}:
x(t) = Acos(2nf t)rect(t/T)
where

, |<T/2
rect(t/ T)=1:" 4
0, otherwise
We are interested in computing the closed form WVD for this signal in order to provide a

means of comparison with the results computed using the discrete-time TFR. Towards

this end, notice that

2 ——
x(t+7/2)x"(F-1/2)= A?'[COS(%fJ) +cos(2nf T )]rect(t +;/ erect(t ;/ 2)

and

rect(t il Z)rect(t il 2) = rect(—j—) 34
T T 2T AL (D)

where

e P 0P
A= ST/

0, otherwise

is a triangular-shaped function of duration 7' seconds centered at £ = 0. Equation (3.4)
defines a diamond-shaped support region in the (#,7)-plane with unity value and has a

Fourier transform pair given by

T . . _sinmx
rect(m) & 2TA (O)sinc(2fTA ()]  where sinc(x)=——

16




If we use the above transform pair and the modulation theorem, the Fourier transform of
x(t+7 /2)x"(t -1 /2) with respect to T becomes
TF(t, f) = A*T A, () cos(4nf t)sinc[2 fT A, (1)]

AT
2

+

ArO{sinc2T A () (f = fN+sinc2T AL (O(f +fI1}  (.5)

which is the WVD of a finite duration carrier signal. Observe that (3.5) becomes (3.3) in
the limit as 7 — o as expected. To illustrate (3.5), the WVD for a finite length carrier

signal sequence is shown in Figure 3.1. The WVD is characterized by a sinc function

Wigner-Ville Distribution of a Finite Duration Carrier Signal
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Figure 3.1 Wigner-Ville Distribution of a Finite Duration Carrier Signal.

17




centered at f = f, with a main lobe width of 2e[2T A, (#)]" Hz with amplitude of

AT
2

A, (7). Note that the WVD depicted in Figure 3.1 has a triangular shape along the

time axis (with maximum value at # = 0), and the sinc function centered at f = f, has a

minimum main lobe width at =0 which increases towards infinite width as

|t| — T'/2. Therefore, the WVD computed for a discrete-time sequence is consistent

with that predicted by (3.5).

B. DISCRETE-TIME WIGNER-VILLE DISTRIBUTION

1. General
For a discrete-time sequence, the WVD kernel function is
¢(nk)=5(n), Vk

and if this is substituted into (2.2), we obtain the expression for the discrete WVD,

L
TF(n,m)=T, Z x(n+k)x(n - k)cos(2rmk / M) (3.6)
k=~L
2. Carrier Signal Sequence

If we set x(n) = Acos(2mmyn/ M) for |n| < L, (3.6) becomes

TF(n,m) =T, i A? cos(2mmy(n+ k) / M) cos(2mum, (n — k)) cos(2rmk / M)

k=-L

2p L
A7, > [cos(4rmyn | M) + cos(4rm,k | M)]cos(2nmk | M)

- 2 k=-L

butsince —L <n+k,n—k < L, we have
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2 L-|n|

TF(n,m) = A1, cos(4nmyn/ M) 3 cos(2nmk [ M)

2 k==Lt
2 L-|n| (3'7)
= £ > cos(4mmyk | M)cos(2rmk / M)
k=—L+|n|
for nnm=[-L—-L+1,...,0,...,L], and TF(n,m) =0 for n,m otherwise.
C. MEAN AND VARIANCE ANALYSIS FOR THE WVD
For the WVD, the kernel function ¢(n,k) =8(n) Vk, and (2.5) yields
L
p(k)= Y.8(p) =1, Vk
p=—L
It follows from (2.4) that
L L
Y(m)=T,3 > x(n+k)x(n-k)cos(2nmk / M) (3.8)
n=-—L k=-L

1. Mean Analysis
For x(n) = s(n)+w(n), where s(n) is a deterministic signal and w(n) is an
AWGN sequence with zero mean and variance of 62, the mean of Y(m) is given by
(2.14) as follows:
E{Y(m)} =Y,(m)+ MI,c* G.9
where Y, (m) is evaluated using (3.8) with x(n) = s(n).
2. Variance Analysis

Similarly, the variance of Y(m) for the WVD can be expressed by (2.18) by

setting p(k) =1 to yield the following:
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Var {Y(m)} =2MT’c* ZL: cos’ (2rmk | M)

k=-L

+4T%c? ZL: i ZL: s(n+k)s(n - k +2k") cos(2rnmk / M)cos(2nmk' /M)  (3.10)

n=-L k=-Lk'=-L
Notice that even for the simple case of the WVD, the expression for the variance of
Y(m) still requires an evaluation of a triple summation. However, for the WVD, the first
term on the right side of (3.10) can be represented in closed form using the Euler relation
and applying the formula for evaluating a geometric summation.
In the next chapter, we evaluate the mean and variance expressions derived in
Chapter II for different kernels in addition to compﬁting the WVD (and Y(m)) for

various noise levels.
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IV. NUMERICAL RESULTS

In this chapter, the equations developed in Chapter II for a deterministic signal
embedded in AWGN are implemented for the case where the signal of interest is a carrier
signal. A comparison of the results using various kernel functions is made for various

noise levels.

A. COMPUTATION OF THE TFR
The TFR for a discrete-time sequence is computed using (2.1). For this thesis,
the kernel function, ¢(n, k), is an even function in both » and £ (i.e. d(n, k) = b(n,—k)

and ¢(n, k) = d(-n,k)) and only real signals are used. By setting

Yk = 36, K)x(n—p + K)e(n—p— k)

p=-L

and substituting into (2.1), we obtain

a1 500"
=2T. me{é y'(n, k)e_’(%)""'} | @D

where
YOD=[or s et @2

Equation (4.1) is evaluated using FFT’s with respect to index k£ (for fixed n). Refer to

the Appendix for further details on this procedure.
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CARRIER SIGNAL SEQUENCE

B.
Suppose x(¥) = cos(2nf.f) for |t| <T/2, and we choose to sample x(f) at 8f,

Hz (8 samples/cycle). This yields the ratio, f/f, =0125, which is defined as the

normalized frequency. Setting ¢ = nT,, we have
x(nT,) = cos(2nf,nT,)

= cos(2n(f, / £,)n)
= cos(nn/ 4)
as our carrier signal sequence, x(n). Figure 4.1 is a plot of this sequence for |n| <31.

Notice that x(n) represents a carrier signal of arbitrary duration (7' = 627, seconds)

Carrier Signal Sequence, fffs=.125
2 .
1.5F .
1r 2 R Q K al a a y
!\ {1\ {\ {\ !\ I\ [\
[0} o0 Q0 o0 Q0 Q0 0 o0 o)
0.5 L I I 1 I I [ A [ 1
2 e [ 1 I [ [ oA [ [ |
3 { AR A TR N WY AN SN A A N T N T A
S 00 ¢ & 0 & & & ¢ & & & ¢ & 0 & N
E \ ll \ I’ ‘\ Il ‘\ !I \\ l, ‘\ l’ \\ J’ ‘\ I
{ | |
O5Fyv 0 v v v v v v
o0 Yo o0 oY) oo 00 X0 o0
‘l ! ‘\ l' ‘\ I, ‘\ l’ \\ }, ‘\ I’ \\ ll ‘\ I,
1t ¢ ] © ® b o 8 e
-1.5¢ .
2 .
0.5 0 0.5
T
Figure 4.1 Example of a Carrier Signal Sequence.
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which can be scaled to some real time sequence. For example, if a sampling rate of 8
kHz was used, x(z) would represent a carrier signal with a center frequency of f,=1 kHz
with a duration of 7=62/ f, =(62/8) ms (approximately 8 ms). For the remainder of
this chapter, the sequence shown in Figure 4.1, specified by

x(n) = cos(nn / 4), for |n| <31 (4.3)

is that signal referred to as the “finite duration carrier signal” used for our analysis.

C.  COMPUTATION OF THE TFR PERFORMANCE MEASURE
The TFR performance measure, SNR,(m), is computed using (2.19). First, the
mean and variance of Y(m), given by (2.14) and (2.18), respectively, are computed.

Without loss of generality, we set 7, =1 in computing SNR,(m). We have

M =2(31)+1=63, and we choose ¢ ? values corresponding to “true” signal-to-noise
— power ratios of +5 dB, 0 dB, and -5 dB. Since the signal power is just one-half (0.5) for
our signal, and o ? represents the noise power, the corresponding values are 0.1581, 0.5,
and 1.581, respectively. Finally, we emphasize here that although SNR,(m) is actually a
sequence of bins indexed by m (with a total number of bins = 128) SNR, (m) is plotted
as a continuous function for visualization purposes.

1. Wigner-Ville Distribution

In Chapter III, the WVD for x(n) defined in (4.3) is shown in Figure 3.1. If

(2.3) is applied (i.e. summing the WVD over index n), we obtain our measure, Y(m),
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which is shown in Figure 4.2. Notice that the maximum of Y(m) occurs at twice f/ f,
(i.e. maximum at f / f, = 025). Recall from Chapter II that we expect frequencies to be

multiplied by a factor of two as a result of employing the discrete-time TFR.

Carrier Signal

-
©
T

Amplitude (normalized to maximum value)
©O o o o o O o o ©O
N w E.N [¢)] (o)) ~ (0] «©

—
L

s
Figure 4.2 Y(m) for the WVD of a Finite Duration Carrier Signal.

The SNR, (m) for the WVD is shown in Figure 4.3. Note that SNR, (m) for each
noise level has been normalized to its maximum value in order to facilitate comparison
between the peak level (at the bin correspondiné to the center frequency) and all
remaining levels. It is important to observe that SNR, (m) is, in fact, maximized at the

bin corresponding to the center frequency of the carrier signal. One would conclude that
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Noise Levels: 5 dB (solid), 0 dB (dashed), -5 dB (dotted)
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Figure 4.3 SNR,(m) (in dB) Using the WVD for Various Noise Levels.

SNR, (m) may be a suitable measure of the performance of the WVD in detecting a
carrier signal in noise.
2. Comparison Among Several Kernels
In this section, SNR,(m) is used as a means for comparing the performance of
the WVD, the Choi-Williams Distribution (CWD), and the cone kernel TFR (CK-TFR)
for detecting a carrier signal in the presence of AWGN. The three kernels are:
WVD: ¢(n,k)=06(n),
CWD: ¢(nk)=e™"",
and
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e, <A

CK-TFR: ¢(n,k)=
0, otherwise

which is a cone-shaped support region in the (n,£)-plane. For each kernel, |n| <L, and
]k| < L. We choose oo = 0.000001 for the CWD, and o = 0 for the CK-TFR.

The decision statistic, Y(m), computed for each kernel for the finite duration
carrier signal defined in (4.3) is shown in Figure 4.4. Again, all plots are normalized to
their maximum value for ease of comparison. Using Figure 4.4, we see that the CK-TFR
yields a higher degree of frequency resolution as compared to that of the WVD and the

CWD. In Figure 4.5, SNR, (m) is plotted for the case where 6> = 05 (0 dB). Notice

WVD (solid), Choi-Williams (dashed), Cone Kemel (dotted)

Amplitude (normalized to maximum value)

0.1 0.2 0.3 04 0.5
fffs

Figure 4.4 Y(m) for Different Kernel Functions.
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WVD (solid), Choi-Williams (dashed), Cone Kernel (dotted)
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Figure 4.5 SNR,(m) Using Different Kernel Functions (Noise Level: 0 dB).

&
o

that there are significant differences in the relative SNR,(m) for main lobe (located at
the center frequency) to sidelobe levels among the three kernels. Additionally, the width

of the main lobe in SNR, (m) is seen to be substantially affected by the selection of the
kernel function. The cone kernel clearly has a much narrower main lobe width among
the three kernels, where the CWD is seen to have the largest main lobe to sidelobe ratio.
Note, however, that although the cone kernel has the smallest main lobe to sidelobe ratio,
the majority of its sidelobes are substantially lower than the other two kernels. This
seems to indicate that the cone kernel results in a higher concentration of signal energy in

the vicinity of the center frequency. Since SNR, (m) represents how the average signal-
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to-noise power ratio is distributed in frequency, one would expect the cone kernel to have

the best chance in maximizing Y(m) at or near the center frequency.

D. EXPERIMENTAL RESULTS FOR THE WVD

In the foregoing, the decision statistic, Y(m), has been computed only for a
deterministic signal. In this section, the signal defined in (4.3) is corrupted by an AWGN
sequence of various noise levels corresponding to “true” signal-to-noise levels of +5 dB,
0 dB, and -5 dB. For each noise level, the WVD and Y(m) are computed and shown in
Figures 4.6 through 4.11. Note that although the WVD of the noisy signal becomes quite

obscured as noise level increases, Y(m) stills reveals a significantly higher measure of

Carrier Signal Embedded in AWGN (Noise Level: +5 dB)
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Figure 4.6 WVD for a Carrier Signal Embedded in AWGN (Noise Level: +5 dB).
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Carrier Signal Embedded in AWGN (Noise Level: +5 dB)
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Figure 4.7 Y(m) for a Carrier Signal Embedded in AWGN (Noise Level: +5 dB).

signal energy near the center frequency of the carrier signal. In fact, Y(m) is maximized
at the center frequency for these particular outcomes. These results, however, are only

coincidental since Y(m) is a random variable for each m.

In general, the maximum of Y(m) may occur at locations other than at the center
frequency, the likelihood of such occurrences increasing with noise level (c?).
However, on the average, Y(m) approaches the expected value of Y(m) given by (3.9).
In Figure 4.12, the average (sample mean) outcome of Y(m) for 100 runs is plotted.

One might consider using the average value of Y(m) as performance measure

since it does tend to maximize Y(m) at the center frequency. However, since Y(m) is a
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random variable (for each m), one would expect the variance in Y(m) to have a
detrimental effect on the relative SNR,(m) at the center frequency. In fact, this is the

case and is seen in Figure 4.13 when contrasted with the mean of Y(m) in Figure 4.12.

Carrier Signal Embedded in AWGN (Noise Level: 0 dB)
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Figure 4.8 WYVD for a Carrier Signal Embedded in AWGN (Noise Level: 0 dB).
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Carrier Signal Embedded in AWGN (Noise Level: 0 dB)
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Figure 4.9 Y(m) for a Carrier Signal Embedded in AWGN (Noise Level: 0 dB). I
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Carrier Signal Embedded in AWGN (Noise Level: -5 dB)
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Figure 4.10 WVD for a Carrier Signal Embedded in AWGN (Noise Level: -5 dB).
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Carrier Signal Embedded in AWGN (Noise Level: -5 dB)
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Figure 4.11 Y(m) for a Carrier Signal Embedded in AWGN (Noise Level: -5 dB).
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Noise Levels: 5 dB (solid), 0 dB (dashed), -5 dB (dotted)
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Figure 4.12 Estimated Mean of Y(m) Using the WVD for Various Noise Levels.
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Noise Levels: 5 dB (solid), 0 dB (dashed), -5 dB (dotted)

T T A 1 T
™~ -
-
[
]
- ! .
)
[/ \
1 ]

a 1 " .
’ ! ’ ?
'|| 2, '\\ i '1 ! ‘\ - "

- - -

Y A A T A TR AR LR L AN AV ‘IA\,“\
-.' A\ ~ - ‘-
! 1
f P 1
L a ,f\\ / \\ o, a ]

¥ \'v‘\r-v—~.-~,f~«-\,—-/\._/ —s’ \ (W W T L WL AN

Y M \

1 1 L 1

fifs

0.5

Figure 4.13 SNR,(m) Using the WVD for Various Noise Levels.
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V. CONCLUDING REMARKS

In this thesis, the signal detection problem was addressed using time frequency
processing. Specifically, a measure (or decision statistic), Y(m), computed from a TFR
was proposed as a means of determining the center frequency of a carrier signal. The
mean and variance of this measure were derived for the case of a signal embedded in
AWGN. Furthermore, a signal-to-noise ratio, SNR, (m), was proposed as a measure for
the performance of a TFR in detecting a carrier signal in the presence of noise.

The Wigner-Ville Distribution (WVD) of a finite duration continuous-time carrier
signal was derived in closed-form and shown to yield the WVD of an unlimited duration
carrier in the limit as the signal duration approached infinite. The WVD was then
computed for a finite length carrier signal sequence and shown to be consistent with the
continuous-time analysis.

The decision statistic, Y(m), and SNR, (m) for the discrete-time WVD were then
plotted for noise levels of +5 dB, 0 dB, and -5 dB (c?=.1581, 0.5 and 1581,
respectively). In all cases, both Y(m) and SNR,(m) were maximized at the center
frequency. This serves as clear evidence that Y(m) can be used to determine the center
frequency of a carrier signal. Additionally, SNR,(m) can also be used to predict the
performance of the WVD based on the assumption of gaussian statistics in Y(m) .

A comparison of Y(m)‘ and SNR, (m) computed for the WVD, the Choi-Williams
Distribution (CWD), and the Cone Kernel TFR (CK-TFR) was made (assumed noise
level of 0 dB for SNR,(m) computation). A quantitative (based on the numerical
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results) analysis of Y(m) revealed that the CK-TFR yields a higher degree of frequency
resolution as compared to that of the WVD and CWD. The SNR,(m) comparison
seemed to suggest that using the cone kernel would maximize the chances of Y(m)
attaining a maximum value at or near the center frequency. This is based on the
observation that SNR,(m) represents how the average signal-to-noise power ratio is
distributed in frequency. Since SNR,(m) computed for the CK-TFR is highly
concentrated in the vicinity of the center frequency, one would expect Y(m) to have a
maximum value located at or near the center frequency more often than it would if
SNR, (m) were distributed evenly in frequency.

Finally, the WVD and corresponding Y(m) were computed for a noise corrupted
signal at various noise levels (+5 dB, 0 dB, and -5 dB) to test whether the proposed
measure yields a maximum value at the center frequency when the carrier is corrupted
with noise. Even though the presence of the signal was barely discernible in the WVD
for some noise levels, Y(m) showed clear evidence of a signal present with energy
concentrated at the center frequency.

In this thesis we have shown that the proposed measure, Y(m), provides a means
of detecting a carrier in the presence of noise. In the absence of noise, the center
frequency of a carrier signal can easily be determined by inspection of the TFR.
However, accomplishment of this task becomes nearly impossible when the carrier is

corrupted with only a moderate level of noise. In addition, the TFR performance
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measure, SNR;(m), can be used to compare the relative performance of different TFR’s
for detecting a carrier signal.

Additional research into the statistics of Y(m) would enable one to perform a
detection and false alarm analysis of a TFR when the frequency (bin) corresponding to
the maximum value of Y(m) is selected as the center frequency. Determination of the
bit rate of a PSK signal might be made by examining the selected bin within the TFR
over time for any periodicity. Ultimately, the proposed TFR measures, Y(m) and
SNR, (m), might also provide a measure by which TFR’s could be used to detect and
discriminate among various digitally modulated signals such as PSK, FSK, and QAM

signals.
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APPENDIX. COMPUTATION OF THE TFR USING FFT’S

A. FFT FORMULATION OF THE TFR

We have from Chapter IV

TFmy =T, y(n, k)e—j{%)m

k=L

- Zﬂme{i Y, k)e'j(%)""‘}

k=0

where

. 05y(n,k), k=0
y'(nk)= .
y(n,k), otherwise

L
since y(n, k) = Z(b(n, k)x(n— p+k)x(n— p-k) is a real and even function in k. In

p=-L
order to evaluate (4.1) using FFT’s, we represent (4.1) as a Discrete Fourier Transform

(DFT) with respect to k¥ (for each ») as follows:

TF(n,m) = 2T,iRe{A§ y'(n, k)eﬂ(%)mk}

k=0
where

, y'(nk), 0<k<lL
y (n,k)={

0, otherwise
Observe that the above expression for 7F(n,m) is 27, times the real part of the DFT
with respect to k& (for each n) of y''(n,k), which is a matrix of MxM elements.

Therefore, in order to use of the FFT to compute 7F(n,m), y''(n,k) needs to have a

41




number of rows (indexed by k) equal to an integer power of two. If we let N =27 (i =

positive integer) be the number of rows in y''(n, k),

1 _f
A — — s
4 NI, N
is the frequency bin spacing and
mf,
=mAf ===
4 4 N

is the frequency associated with each bin where m=0,1,..., N /2-1. Consequently, as a
result of ‘padding’ the original y'(n,k) in (4.1) with additional rows of zeros, the TFR is
represented in frequency by a larger number of bins (N /2 bins). In effect, the true
discrete-time TFR (which is continuous in frequency) remains the same but is sampled at

 smaller intervals (Af ) in frequency.

B. CHOOSING SAMPLING RATE

Since the TFR is to be computed using FFT’s, the frequency bin spacing on the
normalized discrete frequency axis (represented by f/ f,) is the inverse of a power of
two (N7'). In this thesis, we are interested in determining the center frequency of a
carrier signal using the measure, Y(m), defined in Chapter II. |

In order for the maximum of Y(m) to occur at the bin exactly corresponding to
the carrier center frequency, the sample rate used to generate the sequence must be

chosen such that Nf / f, is an integer.
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